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[1] In this, the second of a pair of papers on the structure of well-sorted natural
granular material (sediment), new methods are described for automated measurements
from images of sediment, of: 1) particle-size standard deviation (arithmetic sorting)
with and without apparent void fraction; and 2) mean particle size in material with void
fraction. A variety of simulations of granular material are used for testing purposes, in
addition to images of natural sediment. Simulations are also used to establish that the
effects on automated particle sizing of grains visible through the interstices of the grains
at the very surface of a granular material continue to a depth of approximately 4 grain
diameters and that this is independent of mean particle size. Ensemble root-mean squared
error between observed and estimated arithmetic sorting coefficients for 262 images of
natural silts, sands and gravels (drawn from 8 populations) is 31%, which reduces to 27% if
adjusted for bias (slope correction between observed and estimated values). These methods
allow non-intrusive and fully automated measurements of surfaces of unconsolidated
granular material. With no tunable parameters or empirically derived coefficients, they
should be broadly universal in appropriate applications. However, empirical corrections
may need to be applied for the most accurate results. Finally, analytical formulas are
derived for the one-step pore-particle transition probability matrix, estimated from the
image’s autocorrelogram, from which void fraction of a section of granular material can be
estimated directly. This model gives excellent predictions of bulk void fraction yet
imperfect predictions of pore-particle transitions.

Citation: Buscombe, D., and D. M. Rubin (2012), Advances in the simulation and automated measurement of well-sorted
granular material: 2. Direct measures of particle properties, J. Geophys. Res., 117, F02002, doi:10.1029/2011JF001975.

1. Introduction

1.1. Objectives

[2] This is the second of a pair of papers (the first being
Buscombe and Rubin [2012, hereinafter part 1]) which
addresses the particle-scale structure of natural granular
material. The principal objective here is to provide simple
optical techniques for the non-intrusive, calibration-free and
automated measurement of some ensemble geometric prop-
erties of granular material in a digital image. Part 1 presented
an approach for simulating realistic volumes of granular
material. We use various outputs from this model, as well
as images of real sediment from a variety of sedimentary
populations, to develop and test methods for the standard
deviation of particle sizes (arithmetic sorting), for sediment
both with and without a visible and quantifiable areal
(termed ‘apparent’) void fraction.

[3] In a plan view image of a granular material, as the
geometric projection of a 3D surface onto a 2D plane, par-
ticles overlap (parts of particles are sitting on top of others,
wholly or partially obscuring those underneath). There are
no visible voids, only visible surface and parts of subsurface
particles (see part 1 for a more detailed discussion). The
terminology used in this paper for such surfaces of sediment
is a granular material without apparent void fraction. Sec-
tions (slices) through a volume of granular material with a
bulk porosity will have a real void fraction.
[4] The Fourier-optics principles utilized here follow from

Buscombe et al. [2010] which provided a similar method for
the measurement of mean particle size of touching particles
in an image of sediment. Here, that method is extended to
images of particles with a significant apparent void fraction
(i.e., non-touching particles).
[5] Previous methods have been proposed for estimating

the sorting coefficient from the spatial autocorrelation
sequence (autocorrelogram) of an image of sediment. Rubin
[2004] proposed a method based on least squares analysis of
an empirically determined autocorrelogram from an image
of sediment, and a calibration matrix of autocorrelograms
each representing sediment with different and near-uniform
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particle size. In order to keep particle-size quantities posi-
tive, the least squares problem is solved using a constrained
optimization algorithm. Warrick et al. [2009] proposed a
method based on the method by Rubin [2004] and on the
observation that the standard error of individual particle
sizes computed at each lag was non-linearly related to
measured sample geometric sorting coefficients of beach
gravels. An empirical power law between these standard
errors and sorting was reasonable (r2 = 0.69), but site-
specific. It did, however, suggest that the shape of the 1D
autocorrelogram calculated from the individual sample
could be a potential metric for sample sorting.
[6] However, the present authors found that both methods

produce inconsistent results. Although the method of Rubin
[2004] is theoretically valid, it commonly produces incor-
rect particle-size distributions, possibly because the least
squares problem tends to be ill-posed or possibly because
calculated tails of the size distribution are too sensitive to
errors in the measured autocorrelation or to the measured
size distribution of calibration samples. A calibration-free
‘universal’ method that works equally well for many dif-
ferent granular materials is preferable.

1.2. Paper Structure

[7] The organization of this paper is as follows. First, the
various methods are developed in section 2 for estimating
sorting and mean particle size directly from an image of
granular material (based on the image’s autocorrelogram),
with no tunable coefficients or other calibration, for granular
material with and without an apparent void fraction. This
section includes a modification to the Buscombe et al.
[2010] technique for estimating mean particle size to
account for the existence of an apparent void fraction. The
materials with an apparent void fraction are essentially 2D
sections (slices) made through inherently 3D granular
material. The materials without an apparent void fraction
are the ‘surface images’ (which, as explained above, are the
projections of a 3D surfaces onto a 2D planes), where the
overhead perspective means parts of subsurface particles
are viewed through the interstices of the particles at the
very surface (however, collectively this image is called a
‘surface’).
[8] In order to test the techniques contained in section 2,

a combination of simulations and real images of sediment
was used. Due to the structural complexities of many natural
granular materials, it is useful to have realistic simulations
with known or well constrained statistical properties. Only
simulated material can produce large population sets
quickly, and with a range of combinations of particle size,
particle shape, packing, porosity and other macroscopic
(particle-scale or larger) properties. Section 3 provides a
brief summary of how the generalized modeling approach
presented in part 1 was used to create sediment surfaces
with which to test the algorithms.
[9] For sediment surfaces, measurements of the diameters

of completely visible particles, or bulk measurements of the
surface layers such as sieving, are not appropriate metrics
against which to evaluate the performance of the grain size
metrics obtained from methods such as these. Barnard et al.
[2007] and Buscombe et al. [2010] carried out manual
point counts of intermediate (‘b-axis’) particle diameters on
the screen. These are comparable measurements, but the

automated statistical approach to measuring grain size
inevitably introduces a fine bias in estimates of the popula-
tion particle size statistics, by incorporating information
from all of the objects in the image, therefore all the partial
axes of some particles. The same test was adopted here, but
simulated granular materials can provide a means by which
to quantify the discrepancy between bulk particle size sta-
tistics and those derived from just the visible particles at the
surface, which is the subject of section 3.2.
[10] Section 4 presents comparisons of observed versus

estimated mean particle size and sorting, for material with
(simulations only) and without (simulations, plus images
of real sediment) an apparent void fraction. In section 5 we
present an analytical solution for void to particle transition
probabilities in a 2D section through a two-phase granular
material which can be used to estimate the apparent void
fraction using only the image’s autocorrelation function,
the plot of autocorrelation coefficient as a function of lag
displacement, hereafter ‘autocorrelogram’. The method is
tested using 2D sections (slices) through some simulated
granular materials, again generated using the methods in
part 1. Finally, the uncertainties and implications of this
work are discussed (section 6) before conclusions are
drawn (section 7) .

2. Methods for Estimating Arithmetic Mean
and Sorting

2.1. Stochastic Properties of an Image of Sediment

[11] Buscombe et al. [2010] exploited the stochastic
properties of the image of sediment, as well as of objects
created using a simple stochastic model of fragmentation, as
revealed by the Fourier transform, to recover a geometric
property —the mean of all intermediate (‘b-axis’) particle
sizes —without having to measure the particles directly.
Here, the same is achieved for the standard deviation of all
intermediate particle sizes (sample arithmetic sorting).
[12] A demeaned image of granular material (where the

mean intensity value is subtracted from each intensity value)
composed entirely of touching particles at rest may be
described as an homogeneous Gaussian random field, I,
over two-dimensional spatial position x, {I(x = 1), I
(x = 2),.., I(X)}. Such a field is completely described, in a
statistical sense, by the power spectrum Y(k), or equivalently
its Fourier transform, the autocorrelation function R(l)
(over l lags):

RðlÞ ¼
Z þ∞

�∞
YðkÞe�ikldl ð1Þ

and

YðkÞ ¼ 1

2p

Z þ∞

�∞
RðxÞe�ikldl ð2Þ

where k and i are the wave number vector and imaginary
unit, respectively. The centered, symmetrical 2D Fourier
transform is the analytical equivalent to a diffraction pat-
tern of a granular material body [Preston and Davis, 1976]
without the phase problem of capturing a 2D representa-
tion of a 3D volume. This transform has enjoyed wide-
spread use in the description [Prince et al., 1995] and
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reconstruction [Liang et al., 1998] of granular material.
Optical diffraction and Fourier methods have also been
used to provide a metric of the size of non-touching, rel-
atively low concentration samples or images of particles
[Gorecki, 1989; Momota et al., 1994]. For sediment grains
without a preferred orientation (if the long axes of the
visible parts of most grains are not pointing in the same
direction), we can consider only the radial average of the
(2D) power spectral density, where a are the angles over
which the average occurs:

YrðkÞ ¼
Z 2p

0
YðkÞ k cos a; k sin að Þ kda: ð3Þ

[13] For sediment with a preferred orientation (e.g.,
imbricated gravels) the 2D autocorrelogram (equation (1))
must be used to find wave number k associated with that
dominant angle, typified by the longest elongation of con-
tours of autocorrelation [Buscombe, 2008]. The central limit
theorem implies that a random process will be Gaussian, a
distribution which arises whenever a large number of inde-
pendent vectors are drawn from the same distribution
[Oppenheim et al., 1999]. An image of granular material
satisfies this criterion because the image as a spatial Fourier
decomposition contains Fourier coefficients derived from
independent vectors which are themselves statistically
independent. Such a condition arises because the image is an
intensity map of numerous complicated objects with a full
dynamic range of digitized pixel values, with no preferred
orientation, no correlation between particle color and other
physical characteristics such as shape and size (except from
the case of heavy minerals which are commonly darker in
color and smaller in size), and with no background intensity
(even that arising from inter-particle shadows which tend to
have a distinctive and relatively uniform intensity).
[14] Although an autocorrelogram contains no phase

information, unlike the full 2D Fourier transform, it never-
theless provides statistical information about particle
geometries. In principle, a complete statistical description of
local maxima (individual particle centers within the image)
can be extracted from the autocorrelation function. If the
phase-angle distribution is random in the range [0, 2p] it
does not affect the autocorrelations and it becomes possible
to generate Gaussian fields from the autocorrelogram using
Fourier transforms [Liang et al., 1998; Koutsourelakis and
Deodatis, 2005]. Population statistics from the two-phase
random field may therefore be obtained from its auto-
correlogram despite its non-uniqueness and the loss of
phase information, and without the requirement of first
measuring the outlines of individual particles. This is pos-
sible because the Fourier transform of a Gaussian function
of variance sI

2 is also a Gaussian shape but with variance
1/sI

2:

IðxÞ ¼ 1

sI

ffiffiffiffiffiffi
2p

p e�x2=2s2
I ↔

F
HðkÞ ¼ e�s2

I =2 ¼ e�k2=2ð1=s2
I Þ ð4Þ

where F denotes Fourier transform, or its inverse. Impor-
tantly, such a Gaussian random field is completely

described, in a statistical sense, by its mean and autocor-
relation function [Ripley, 1981].

2.2. Arithmetic Mean

[15] Buscombe et al. [2010] exploited these properties to
show that an image of sediment can be modeled as a
Gaussian random field and further that the autocorrelogram
is related to the probability of finding two points separated
by l pixels and belonging to the same (void-particle) phase,
and further to recover the mean of the size-density of parti-
cles, which is given as:

m ¼
Z
S
sPðsÞ ¼ 2p=kR ð5Þ

where s are the S particle sizes present with probability density
P(s), and kR (units of 1/pixels) is the wave number associated
with the lag at which R(l) = 0.5. The main advantages of the
method are: 1) the autocorrelogram, since it is drawn from the
power spectrum, captures all scales of variability and therefore
contains information on the entire range of wavelengths (par-
ticle sizes) present in the image; and 2) the mean is estimated
directly without first determining the entire particle size dis-
tribution P(s). Similarly, it should be possible to estimate s
(the standard deviation of particle sizes) directly, again using
information from R(l) on the range of scales of objects (parti-
cles) within the image it represents.

2.3. Arithmetic Sorting

[16] The approach taken here to estimate heterogeneity in
particle sizes is to quantify the divergence in form between
the sample’s autocorrelation R(l) and that of an idealized
material, hereafter termed Ru(l), which has the same mean
particle size but zero variance. This model for zero particle-
size variance is nonlinear because the particles possess a
distribution of shapes. For example, identical-sized tessellated
squares would give a linear autocorrelogram of �0.1l + 1
[Buscombe et al., 2010], but the theoretical form of cell
distributions formed from other forms of tessellation are
always nonlinear [e.g., Muche and Stoyan, 1992].
[17] Experimental evidence [Rubin, 2004; Buscombe and

Masselink, 2009] and simulations [Buscombe et al., 2010]
have shown that the autocorrelogram for well-sorted granu-
lar material consist of a steep quasi-linear part between
0.5≤ R ≤1, and a concave part between 0≤ R ≤0.5. The shape
becomes more exponential with smaller standard deviation
of particle sizes. Warrick et al. [2009] noted that auto-
correlograms associated with images of more poorly sorted
sediment (a larger standard deviation of particle sizes)
diverted more significantly from an exponential shape
(usually either the linear part is shorter or the concave part
flatter, or both).
[18] Based on the above observations it would therefore

seem that a suitable model for Ru(l) is a single exponential
decay in autocorrelation (a principle also used in the field
of photon correlation spectroscopy to estimate the par-
ticle size of a monodisperse particulate suspensions. See
review by Berne and Pecora [2000]). The image’s auto-
correlogram is the sum of the exponential decays
corresponding to each of the grain size fractions present.
The form of such an autocorrelogram would become more
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dissimilar to an exponential shape with more grain size
fractions present, consistent with the observations of
Warrick et al. [2009]. It is therefore hypothesized that an
exponential autocorrelogram shape represents a granular
surface with given mean particle size and zero variance,
and that exponential functions evaluated over l, scaled by
kR, tend to be suitable models for Ru.
[19] In order to remove the influence of any preferred

orientation in the power spectrum, the 1D R(l) is calculated
from the 2D R(l) (1) by radial-averaging [Prince et al.,
1995]. Hereafter, R(l) refers only to the 1D, radially aver-
aged autocorrelogram and Ru(l) is therefore also a 1D
function. Information at small lags is primarily on small
wavelengths, but still may be affected to some degree by
large wavelengths if the distribution is not perfectly sym-
metrical. Likewise, information at large lags depends pri-
marily on large wavelengths. The central point (the lag at
which R = 0.5) corresponds to the mean [Buscombe et al.,
2010]. The difference between empirical and idealized
autocorrelograms is related to s because both have a unique
minimum (i.e., zero) at the mean, so that the difference
between the two curves is zero at that lag. This minimum of
zero dictates that s is proportional to the integral of the
entire difference in autocorrelograms, rather than two
separate integrals for the portion of the autocorrelograms
above and below the mean. Therefore, the divergence in
form is quantified in terms of the absolute value of the
difference between the two functions. Formally we may

write the above as follows. The arithmetic standard devia-
tion s is given by the definite integral of the difference
between the sample’s (empirically derived) auto-
correlogram and that of an idealized material with same
mean, Ru but zero variance. Symbolically, treating s as a
continuous random variable and the second central moment
of P(s):

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
S
ðs� mÞ2PðsÞ

s
¼ c

Z
L0

½jRðlÞ � Rujdl� ð6Þ

where constant c is chosen to scale the integral to be
invariant of m. This constant is revisited later after suitable
models for Ru(l) are proposed. This new method is sum-
marized graphically in Figure 1. The left panel depicts
examples R(l) (solid line) for an image of a granular surface
(with a size distribution) and its corresponding Ru(l)
(dashed line). The standard deviation s is the product of
c and the definite integral evaluated over l = [0, L0] of the
absolute value of the difference between R(l) and Ru(l)
(right panel). L0 is necessary because the autocorrelograms
of random fields such as images of sediment tend to fluc-
tuate around zero at long lag due to edge effects, non-
uniform lighting and the presence of noise.
[20] Estimated autocorrelation coefficients become less

reliable with increasing lags [Bartlett, 1946]. The suitable
value for L0 is suggested as the first lag where R equals 0.

Figure 1. Schematic of the approach used to derive arithmetic sorting from an autocorrelogram. (left)
The term Ru(l) is used for a sediment with zero particle-size variance (solid) and empirical R(l) is used
for a sample with a distribution of particle sizes (dashed) but the same mean. (right) The differential typ-
ically shows two peaks associated with the fine and coarse tails, respectively, and a unique minimum at the
lag associated with the mean.
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The explanation has a parallel in fluid mechanics, where the
integral length scale of turbulence Taylor [1938] is calcu-
lated as the definite integral of the autocorrelogram, evalu-
ated to the first lag where R equals 0. This integral quantifies
the spatial extent of correlations, and equals 2p multiplied
by the spectral amplitude at wave number 0 [Priestley, 1981,
p. 320].
[21] The Gaussian e�kR2l2 [Koutsourelakis and Deodatis,

2005] is considered suitable as a simple model for Ru

because sediment images can be modeled as Gaussian ran-
dom fields (section 2.1), and also because of this model’s
widespread use in modeling idealized random fields with
zero variance [Goff and Jordan, 1988; Holliger et al., 1993;
Fenton, 1999; Buscombe et al., 2010]; random point pro-
cesses [Davis, 1986]; the statistics of fragmentation [Grady,
1990]; and because of its mathematical simplicity. Another
important practical implication is that the constant c in
equation (6) can be determined using a quantity known as
the scale of fluctuation, d, which quantifies the spatial extent
of strong autocorrelations [DeGroot and Baecher, 1993;
Fenton, 1999]. The Gaussian-exponential function has an
analytical derivation for d, given by 1/kR [Uzielli et al.,
2005]. Since kR = 2p/m (5), c = p in order to scale the inte-
gral to be invariant of m.
[22] The use of the Gaussian for Ru gives the following

expression for s:

s ¼ p
Z
L0

h
jRðlÞ � e�k2Rl

2 jdl
i
: ð7Þ

Radial (1D) averages of the power spectral density of the
sediment image reduce to, for a Gaussian autocorrelogram:

YrðkÞ ¼ s2
I L

2
kle�k2l2=4: ð8Þ

Other simple models such as exponential e�kRl and cosine-
exponential e�kRlcos(kRl) [Uzielli et al., 2005] also have ana-
lytical derivation for d and could be used instead of the
Gaussian. Competing simple models for Ru related to the
Gaussian-exponential, such as the Voronoi (1 + 2kRl)e

�2kRl

[Muche and Stoyan, 1992; Buscombe et al., 2010] and von
Karman [Goff and Jordan, 1988], are not considered further
in this contribution because we do not know of an analytical
derivation for d [Uzielli et al., 2005]. In other situations,
models with no analytical solution to d (hence c) may have
applicability, in which case those parameters have to be
determined empirically following one of the methods
reviewed by Uzielli et al. [2005].
[23] The form of (6) applies when the image is composed

wholly of particles, either fully exposed or partially hidden
(in other words, where there is no apparent void fraction or
‘porosity’). Such images include surfaces of unconsolidated
granular materials imaged with a camera (see part 1 for a
review). In instances where there is a void fraction, such as
sections through granular material, (6) must be modified to
account for the presence of said void fraction. The only
modification required to (6) is that the integral is scaled to
be invariant of m using (1 � f)c, which has the limits [0, c].

Therefore, the relation for sorting accounting for known void
fraction takes the form:

s ¼ cf
Z
L0

½jRðlÞ � Rujdl�: ð9Þ

[24] Similarly, the method of Buscombe et al. [2010] for
calculating mean particle size is modified to account for the
void fraction:

m ¼ f3pkR: ð10Þ

Equations (5) through (10) give their results in dimensions
of length in pixels. To convert to real units of length, outputs
are multiplied by the spatial resolution of the image (in units
of length/pixel). In the following, the Gaussian model (7) for
Ru has been adopted, both for images with and without an
apparent void fraction.

3. Surfaces of Simulated Granular Material

3.1. Description

[25] The immediate application of the (3D) modeling
approaches detailed in the companion paper (part I) has been
to replicate a planform perspective of a sediment deposit, as
would be captured by a photograph. The techniques have
enabled a diverse set of simulations of granular materials
with known properties and with which to evaluate the
methods outlined in section 2. A few example images from
various model outputs are shown in Figure 2. These are
models of unconsolidated sediment surfaces with no appar-
ent void fraction, with known population and apparent
particle-size distributions. The images are composed of
particles random in location, shaded, and ‘packed’ to a depth
of several particles, so void space effectively disappears and
the image looks like whole particles with parts of particles in
the interstices. The reader is referred to part 1, a large pro-
portion of which is devoted to the explanation of various
spatial point-generating models which give rise to different
particle packings. Here we have used model outputs from
the following models, in order of decreasing regularity
(determinism) in the packing of particles: 1) CVT-Halton
(a centroidal Voronoi tessellation [Du et al., 1999] based on
particle centers generated by a Halton process [Halton,
1960]); 2) CVT-Uniform (a centroidal Voronoi tessellation
based on a more uniform spatial distribution of particle
centers); 3) NVT-Poisson (a normal Voronoi tessellation
based on a Poisson (random) distribution of particle centers);
4) Strauss (one where a specified fraction of particle centers
is allowed within a distance of any given particle center
[Ripley, 1981]); 5) CP (Cluster Poisson: essentially a Pos-
sion distribution for particle centers with a built-in particle
clustering mechanism) with small variance (s2 = 0.01; s is a
parameter which controls the spread of particles in a cluster);
and 6) CP with large variance (s2 = 0.1).

3.2. Surface-Subsurface Grain Size

[26] Granular simulations based on the NVT-Poisson
model (defined above and described in part 1) have been
used to quantify the effect of particle overlap on the mean
size of particles apparent on the sediment surface. Models
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are used instead of real samples because highly accurate
measurements of particle size are required in very thin sur-
face layers to a depth beyond which no particle is visible
from the surface from an overhead perspective. Such mea-
surements would be very difficult with real samples with the
same accuracy as achieved using simulations (this is one of
the uses for which the simulated-sediment models of part 1
were developed). The geometric projection of the surface
(or any intersection) of a simulated 3D sediment volume
onto the 2D plane which we call the ‘image’ of that surface
has similar properties as images of real sediments, where
parts of particles/cells are sitting on top of others, wholly or
partially obscuring those underneath.
[27] A granular material composed of unconsolidated

packed grains, at less than its angle of repose, has a bulk
concentration (usually between 0.6 and 0.7). The top surface
layer of grains, for example the grains you will pick up using
a greased card, will be of a slightly lower concentration. This
is because of relative grain-scale topography, caused by
packing within the interstices of the grains below. The grains
at the very surface have no grains above them to fill in their
interstices, so the concentration is lower than that of the
bulk. This only applies to surface grains. One can see the
grains below this surface layer through their interstices.
[28] Particles on the surface of natural beds have been

shown to have a statistically random spatial distribution of
particle heights and locations [Nikora et al., 1998] and the

same is true of the elevations of particles in the surface layer
of simulated granular materials. Figure 3 shows a surface of
a 3D simulated sediment bed in which the particles are
shaded according to their depth. Similar to surfaces of nat-
ural sediment beds, the 3D particles of the simulation touch
and are packed randomly with an apparent pore space. In
this regard model outputs are realistic, being how we per-
ceive a plan view of a sediment surface.
[29] Volumes of granular materials were simulated with

differing numbers of particles, with surfaces like those in
Figure 2. The beds were between 15 and 40 particle dia-
meters thick, depending on particle size, but were of iden-
tical volume. Sections were taken through each bed at a large
number of discrete vertical coordinates through the volume.
Figure 4 shows four such slices through a 3D bed. For each
slice, the mean particle size was calculated. As one would
expect, that size is always small where the tips of the parti-
cles are being intersected (Figures 4a and 4b). The depth to
which particles may be viewed from directly overhead was
found to be a consistent 4–5 mean particle diameters, and
this trend was consistent across particle size and type of
model used (note that for the construction of Figure 4, the
CVT-Uniform model was used).
[30] The ratio of mean particle size per slice to mean size

per volume (i.e., the ‘intersected’ mean, which is the mean
of all sliced grain sizes), is shown in Figure 5 to be an
increasing function of depth from the surface, expressed in

Figure 2. Projected images of the surfaces of a variety of synthetically generated 3D granular material.
From left to right, and top to bottom, decreasing in mean particle size and increasing in the degree of deter-
ministic structure to the particle packing. (top left) An inhomogeneous CP-based sediment with inten-
sity l = 10 and variance s2 = 0.01; (top middle) a CP-sediment with l = 10 and s2 = 0.1; (top right)
has been generated using a Strauss inhibition process to generate particle centers. The granular materi-
als have been generated using (bottom left) NVT, (bottom middle) CVT-Uniform, and (bottom right)
CVT-Halton spatial point processes.
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terms of the number of mean particle diameters depth. This
can be explained by two phenomena which act in concert.
The first is that the likelihood of slicing through the largest
part of the grain will increase roughly toward the grain’s
center (of mass or otherwise defined). This not only affects
the surface layer but also subsequent layers due to the
influence of packing causing adjacent particles to have their
centers at different relative elevations. The second process is
that as the concentration increases with slice depth the like-
lihood of encountering a relatively large grain in the popu-
lation increases. The increase in mean particle size as a
function of depth is roughly exponential.
[31] Figure 5 shows that the point at which the rate of

change of grain size with depth starts to plateau is also the
approximate depth to which parts of subsurface grains are
visible from the surface. This seems to be independent of
average grain diameter. The implication for automated
algorithms for sediment surface particle size is that such
estimates (as well as the ‘true’ measurements against which
we compare estimates, using point counting methods of
apparent particles, be they whole or partially obscured) are
likely to be smaller than the intersected mean as given by the
mean of all intersected particle sizes in the volume, but that
this effect is only relevant down to a depth of about 4 par-
ticle diameters.

4. Observations Versus Estimates

4.1. Simulated Surfaces

[32] The relationship for sorting (7) was tested using
images of simulated granular material surfaces from the full
range of model types described in section 3.1, a subset of

Figure 3. Four superimposed slices (sections) through the
surface of a NVT-Poisson based 3D sediment bed, where
the particles have been colored according to the depth of
their center (white is 0 mean particle diameters, i.e., the very
tip of the surface; light grey is 1; grey is 2; and black is 3).
By 3 particle diameters depth, there tend to be no apparent
void spaces (in other words, no gaps seen through the bed
from overhead, the particles taking up all apparent space
from this perspective), and beyond this particle size statistics
of individual slices stabilize. Typically surface views of sed-
iment contain particles whose centers are within 3 mean par-
ticle diameters of the tip of the sediment.

Figure 4. Slices through the surface layers of a NVT-Poisson based simulation of a sediment bed, similar
to Figure 3 but in this case the slices (which are not identical) are separated: (a) top layer (1% of total depth
of the bed, which is 40 mean particle diameters); (b) next layer down, about 1/2 particle diameter from top;
(c) next layer down, about 1 particle diameter from top; and (d) about 2 diameters from top.
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which are shown in Figure 2. The number of individual
particles required for good estimates of the mean particle
size using (5) was shown by Buscombe et al. [2010] to be
more than approximately 1000. It was assumed that a similar
number was required for estimates using (6), therefore ima-
ges were generated containing between 1000 and 64,000
individual particles. For these simulated surfaces, the algo-
rithm of Buscombe et al. [2010] predicts apparent mean
particle size reasonably well: the errors are homoscedastic
with an ensemble RMS error of 14.9% using (5) for mean
size (Figure 6a). The ensemble RMS error for sorting is
13.9% using (7) (Figure 6b). Table 1 shows RMS errors for
individual ‘populations’ of simulated material. Names for
populations therein refer to the spatial model used in their
construction (see section 3 for description and part 1 for a
detailed explanation).

4.2. Images of Real Sediment Surfaces

[33] The sorting algorithm (7) was also tested using a set
of 262 images from 8 different populations of natural
unconsolidated granular surfaces (taken from beaches, rivers
and continental shelves), both sand and gravel, taken with
different camera/lighting systems. The images were mostly
taken in situ, and often underwater, which required specialist
hardware (the details of which are given by Rubin et al.
[2007] and Warrick et al. [2009]). The set constitutes a
subset of the populations used by Buscombe et al. [2010] for
which a reliable estimate of sorting coefficient was available.
This was achieved through manually measuring the

intermediate axis of every whole particle in each image (see
Barnard et al. [2007] for a more complete description). This
is a time-consuming process, but the only way to indepen-
dently measure the same particles as the estimation tech-
nique, thereby achieving a truly comparable metric of
particle size [Warrick et al., 2009; Buscombe et al., 2010].
[34] The ensemble RMS error in mean size of 30.9 %

(Figure 7, circles) using (7) (the Gaussian model), which
reduces to 27.4 % when corrected for bias (Figure 7, dia-
monds). Bias-correction is a slope correction applied to
estimates, found as the matrix division of estimates and
observations (which forces the intercept through the origin).
This calibrates for population-specific factors which may be
present in, or apply to, images of natural particles. These
factors are discussed in the next section. Table 2 lists
uncorrected and corrected RMS errors, and the slope cor-
rection, for each of the 8 populations.

4.3. Simulated Granular Material With Void Fraction

[35] Simulations of sediment ‘sections’ (inherently 3D
granular material simulated using the CVT-Halton methods
outlined in part 1), with apparent void fraction (f) owing to
the sectioning effect (examples shown in Figure 8) were
used to evaluate (9) and (10) for, respectively, sorting and
mean particle size when apparent void fraction is known. In
these simulated sections through 3D granular material, par-
ticles have not been allowed to touch. Instead, particle
locations have been held constant and the void fractions
have been increased to varying degrees. Therefore, we are

Figure 5. Mean particle size as a percentage of the mean of all intersected particles in the sediment (the
same simulations as in Figure 4), calculated over a depth expressed in mean particle diameters. Error bars
show the same statistic based on the maximum and minimum of intersected means. The mean of all par-
ticles from the surface to that depth is likely to be around 10% smaller than the intersected mean particle
size due to the effects of partial particle concealment.
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testing only the influence of the basic structure of the bed
and porosity, not factors such as grain coalescence. Using
these beds, the ensemble RMS error between sorting obser-
vations and estimates is 10.4% using (9) using Ru and c
appropriate for the Gaussian model (Figure 9a). Sorting
estimated using (9) is very sensitive to correct measurement
of void fraction. Here, the apparent (2D) void fraction is
known precisely, but in images of real sectioned consoli-
dated sediment it would be necessary to use careful thresh-
olding techniques to measure void fraction exactly.
[36] The use of (10) to estimate mean particle size is not as

good as estimates of sorting using (9), with an ensemble
RMS error of 36% (Figure 9c, circles). It was found that
error goes with f such that, where O and E are observations
and estimates:

O� E

O
¼ 7:6f3 � 16:6f2 þ 12:3f� p: ð11Þ

(Figure 9b) using a cubic polynomial least squares fit with
the constraint that the curve passes through f = 0 where
(O � E)/O = p (see Appendix A). However, the corrected
estimate of the mean, which reduces the RMS error to 9.2%,
requires O. Therefore in practice error must be evaluated as
O � E which, using the method outlined in Appendix A,
requires estimating what value (O � E) takes when f = 0. If
this is estimated visually to be �180 (�p), the correction of
(10) takes the form:

m ¼ f3pkR þ ð393f3 � 880f2 þ 675f� 180Þ ð12Þ

which reduces the ensemble RMS error to 8.9%. The cor-
rected estimates of the mean particle size are shown as stars
in Figure 9c. This method is only applicable if void fraction
is known or well approximated.

4.4. Real Granular Material With Void Fraction

[37] The methods for sorting and size given by equations
(9) and (10) were tested using an image of thin section
through a sample of Folkestone sandstone [Cresswell and
Barton, 2003]. The image is of poorly cemented quartz
sands (Figure 10a reproduced from Cresswell and Barton
[2003, Figure 2]) with an apparent void fraction of f =
0.4. The standard deviation and mean of particle size cal-
culated using (9) and (10), respectively, compared very well
with the respective measures made by manually counting the
on-screen intermediate diameters of particles (Figures 10b
and 10c). Measured s and m of 53.7 and 130.7 pixels,
respectively, compared with estimates of 54.7 and 127.9
pixels. However, results are very sensitive to specification of
f (for example, using 0.35 increased percentage error in
estimates of the mean from approximately 2% to 14%).

5. Void-Particle Transition Likelihoods and First-
Order Approximation for Void Fraction

[38] In this section, we present a theoretical derivation of
the first-order Markovian properties of a random binary

Table 1. Summary of RMS Errors (%) for Sorting and Mean Esti-
mates Based on Tests With Simulated Granular Surfaces

Population Mean RMS Error (%) Sorting RMS Error (%)

NVT-Poisson 31.6 22.16
CVT-Uniform 31.5 17.2
CVT-Halton 9.42 8.84
CP small variance 20.8 25.7
CP large variance 31.9 15.27
Strauss 25.2 22.1
Ensemble 31.36 24.43

Figure 6. Estimated versus (a) true mean and (b) arithmetic sorting for 44 simulated sediment surfaces
from a range of models (detailed in section 3.1) similar to those depicted in Figure 2. Ensemble RMS
errors are 14.86% and 13.9%, respectively. The 1:1 relationship (dashed line) is also shown. All units
are pixels.
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(void, particle) field constructed from the Voronoi tessella-
tion of a simple Poisson (random) point process. Given the
utility of such a tessellation for the modeling of granular
material, as described at length in part 1, we argue that this
can be used to estimate the one-step pore-particle transition
probability matrix of a 2D section through a volume of
granular material. One practical corollary is that the 1-step
pore-particle transition probability matrix can be expressed
in terms of the (easily computed) empirical autocorrelogram
if the void fraction is known. This derivation is also shown.
[39] The granular section may be considered in continuous

space and two intermittent phases (q); void (1; v) and particle

(2; p). The space over which each phase exists follows an
exponential distribution P[q ; Dx] = e�(Dx/Xq) where Dx is a
spatial step (in any dimension), and Xq is the mean distance
over which state q persists [Cressie, 1993].
[40] Assuming no sub-spatial step variation, the matrix of

single-step transition probabilities of phases i and j can be
expressed:

Pij ¼ PðvjvÞ PðvjpÞ
PðpjvÞ PðpjpÞ

� �
¼ e�Dx=X1 1� e�Dx=X1

1� e�Dx=X2 e�Dx=X2

� �
ð13Þ

Figure 7. Measured arithmetic sorting versus that estimated versus using equation (7) (filled circles) and
bias-corrected estimated sorting (diamonds). The slope adjustment is given in Table 2. The 1:1 relation-
ship (solid line) and �20% (dashed lines) are also shown. All units are pixels.

Table 2. Summary of Tested Populations and Errors Associated With Application of Equation (6) for Arithmetic Sortinga

Population N Sediment RMS Error, Uncorrected (%) RMS Error, Corrected (%) Bias Slope

Santa Cruz 1 23 Silt/Sand 18.22 13.89 1.12
Elwha 55 Sand/Gravel 17.51 16.17 0.94
Pescadero 1 55 Sand 40.08 16.75 1.11
Colorado River 13 Sand 17.42 16.95 1.04
Santa Cruz 2 13 Sand 27.64 18.35 0.83
Quarry 15 Gravel 20.03 19.26 1.05
Pescadero 2 35 Sand 43.49 25.78 0.77
Slapton 53 Gravel 35.25 35.12 0.97
Total or Ensemble Mean 262b 30.85c 27.44c

aN refers to the sample size (number of images of sediment) in each population;bias slope is the correction required for the measured-estimated
relationship to pass through the origin (referred to elsewhere in the table as ‘corrected’).

bTotal.
cEnsemble mean.
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where X1 is the mean distance as pore and X2 is the mean
distance as particle. Noting the limits

P′ij ¼ lim
Dx→0

PijðxþDxÞ � PijðxÞ
Dx

ð14Þ

lim
x→0

PijðxÞ ¼ Pj ð15Þ

lim
x→0

P′
ijðxÞ ¼ Pj ð16Þ

and defining P1 is the probability of a void and P2 the
probability of a particle, where P(p) as the probability that a
point lies on a particle, the matrix of single-step transition
probabilities can be rewritten as:

P1

X1

P2

X2
¼ 0ðx → ∞Þ ð17Þ

P1 ¼ X1

X1 þ X2
ð18Þ

P2 ¼ X2

X1 þ X2
ð19Þ

P2 ¼ PðpÞ: ð20Þ

[41] Pij has a ‘steady state’ marginal probability distribu-
tion which will satisfy [Kemeny and Snell, 1960]:

P ¼ lim
x→∞

ðPijÞ ¼ Pj ¼ PijP; P ≥ 0; ∑P ¼ 1: ð21Þ

The ratio of the joint probabilities of Ii and Ii�l and mar-
ginal probabilities of Ii gives their conditional probabilities
P(Ii�l|Ii) (which is termed the ‘autorun’ function by Sen
[1978, 1984]) and can be expressed as:

PðIi�l jIiÞ ¼ PðIi�l; IiÞ
PðIiÞ : ð22Þ

[42] The information necessary to statistically construct
P(Ii�l|Ii) is given by the lag l (spatial) autocorrelation
estimate of {I(x = 1), I(x = 2),.., I(X)} observations, R(l).
Inserting (22) into (13), Pij may be rewritten as:

Pij ¼
PðIi�1jIiÞ f

1� f
ð1� PðIi�1jIiÞÞ

1� PðIi�1jIiÞ 1� f
1� f

ð1� PðIi�1jIiÞÞ

0
BB@

1
CCA: ð23Þ

[43] The conditional probability P(Ii�1|Ii) will hereafter
simply referred to as r. In the absence of a known joint
probability distribution, following Sen [1978] for the rela-
tionship between R and r (assuming I is Gaussian distributed

Figure 8. Example sections through CVT-Halton based simulated granular material with apparent void
fraction: (a) 248 particles (mean size = 44 pixels), f = 0.79; (b) 314 particles (mean size = 49 pixels), f =
0.67; (c) 367 particles (mean size = 56 pixels), f = 0.5; (d) 431 particles (mean size = 61 pixels), f = 0.29.
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with respect to x), (23) can be rewritten, for known f and R1

(l = 1), as:

Pij ¼
�

f
1� f

1� �ð Þ

1� � 1� f
1� f

1� �ð Þ

0
BB@

1
CCA: ð24Þ

where � = [1/2 + p�1arcsin(R1)]. For this binary case (21) is
solved as the following matrix division:

P ¼ 0 1ð Þ
PðpjpÞ � 1 1
PðgjpÞ 1

� � ð25Þ

and the solution reduces to

P ¼ f;1� f½ �: ð26Þ

Figure 9. (a) Estimated versus true arithmetic sorting for 114 sections through simulated granular mate-
rial, with ensemble RMS error of 10.43% (dashed line is the 1:1 relationship); (b) Estimated versus true
arithmetic mean size, with ensemble RMS error of 36% for uncorrected estimates (equation (10), circles;
dashed line is the 1:1 relationship) and 9% for estimates corrected using the function in (12); (c) normal-
ized error as a function of void fraction f, with fitted function according to the method in Appendix A.
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[44] Using this theory, the probabilities of pore-particle
transition may be estimated from the (very easily computed)
autocorrelogram of the granular material. Transition proba-
bilities were measured for the cemented sand sample of
Figure 10a, binarized so particles are 1 and voids are 0, as
shown in Figure 11. Transition probabilities estimated using
(24) from the image’s autocorrelogram are not exact
(Table 3) but are well approximated to first-order and good
enough to predict f calculated using (26). In this exam-
ple a measured f = 1 � (∑ Ix/N) = 0.4081 compared
to an estimated f = 0.4029, which further supports the
basic theory presented above. Similar tests were conducted
using sections of simulated granular material (using the
CVT-Halton model; see section 3.1 for definition) with a
range of porosities and number of particles. The transition

probabilities based on autocorrelation (25) are shown as
lines in Figure 12 and the actual values as symbols, showing
that the estimates are only approximate.

6. Discussion

6.1. Sedimentological Basis for Ru

[45] The new techniques for estimating sorting given by
(6) and (9) outlined here are consistent with the observations
of Warrick et al. [2009] who noted that correlograms asso-
ciated with images of more poorly sorted sediment (a larger
standard deviation of particle sizes) diverged more signifi-
cantly from an exponential shape. That shape we now
hypothesize to represent a granular surface with given mean
particle size and zero variance.

Figure 10. (a) Thin section of a poorly cemented, quartzose fine, medium and coarse sand (Folkestone
formation, southeast England) imaged under crossed polar light. The field of view is 3mm across. Detrital
quartz grains are white, grey and black, and the pore spaces black. This is sample A2 reproduced from
Cresswell and Barton [2003, Figure 2] with an apparent porosity of 0.4. Image is 879 � 1386 pixels;
(b) intermediate diameters counted manually on-screen; (c) histogram of manual point counts of particle
size. Dashed vertical line indicate the mean grain size estimated by application of equation (10).
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[46] Since the autocorrelogram can be derived directly
from the image, and the mean can be calculated using the
method of Buscombe et al. [2010], the method for calculat-
ing s has two points of adjustment, which are the equation
for Ru(l), and defining a suitable lag for L0. This can be
regarded as advantageous considering the multifarious
structural nature of sediment, and the variety of devices
through which granular material may be imaged with dif-
ferent spatial resolutions. However, it also means that esti-
mation of arithmetic sorting is not as straight-forward in
application as the method proposed by Buscombe et al.
[2010] for mean particle size, because one must choose on
a model of idealized material with zero variance, Ru. Here
we considered a simple model —the Gaussian-exponential
(7) —with which to evaluate against observations. It is
possible, however, that the model-observation mismatch is
minimized by a model for Ru not considered here, and fur-
ther that there is an optimal model for each population
granular material under scrutiny. Further work is needed to
ascertain whether there is a sedimentological rather than
purely statistical basis for choice of model for Ru.

6.2. Evaluation

[47] It has been shown here that calibration is often nec-
essary, with images of real sediment surfaces, to reduce
the RMS error to an acceptable level by removing the
population-specific bias due to a number of potential factors
(Figures 7 and 9). These factors are inherently more difficult
to model and could be potential sources of error in the
application of the technique. The two main sources of error
are: 1) the estimation of the mean particle size (algorithm
error) and; 2) the sedimentological structure of the bed.
Since the former and the latter are also related, it would
be very difficult to separate their relative contributions to
the total error.
[48] Examples of factors related to the sedimentological

structure of the bed include the influence of particles so
small they are sub-pixel in diameter, or so large they occupy
a significant proportion of the image. In both instances, the

estimated particle size statistics would be weighted with a
coarse bias. Other potential problems could be distributions
with multiple peaks, granular coatings (e.g., biogenic) and
intragranular variability (pock-marks, scratches, and other
shading-variations within individual particles). This latter
factor was found by Buscombe et al. [2010] to cause very
small errors (≤10%) in estimated means, but strong reflec-
tions from crystal facets, where present, could constitute a
significant source of error.
[49] Experience dictates that all of these are likely, and at

least one of these factors is highly probable in most images
of natural particles, especially those taken in the field. It may
therefore be unreasonable to expect the methods outlined in
this contribution to be applicable to all images of real sedi-
ment without significant error. In this instance, the best case
scenario is that the source(s) of error(s) can be removed by
filtering, or are site-specific and can be corrected by cali-
bration. The fact that the errors are minimized to a satisfac-
tory level using a calibration taking the simplest possible
form (i.e., slope correction) means errors are specific to, and
vary with, sediment populations rather than individual
sample images (‘correcting’ each sample individually would
of course render the ‘automated’ technique useless).
[50] Like the method of Buscombe et al. [2010] for esti-

mation of the mean from the frequency transform of an
image of sediment, the techniques described here for esti-
mation of arithmetic standard deviation of particle sizes do
not require resolution of the entire particle size distribution.

Figure 11. Binarized version of the cemented sand section shown in Figure 10a, with apparent porosity
f = 0.4.

Table 3. Pore-Particle Transition Probability Matrix (13) Containing
Probabilities Estimated Using Equation (24) Inside Parentheses and
Those Measured From the Image are Outside Parenthesesa

Transition v p

v 0.9663 (0.9095) 0.0337 (0.0905)
p 0.228 (0.0603) 0.9772 (0.9397)

aThe term v refers to voids and p is particle such as in equation (13), →
represents transition.
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We therefore call these direct estimates. The disadvantage of
such an approach is that it is not possible to estimate given
percentiles of the particle-size distribution (widely used in
geomorphology for example to quantify roughness) without
first modeling the distribution, given the mean and standard
deviation, using some assumed distribution shape (normal,
lognormal, etc).
[51] A variety of quantitative measures are used to

describe spread of a distribution of particle sizes, but none
are universally accepted [Fieller et al., 1992]. The arithmetic
standard deviation, in linear units (rather than the sedimen-
tologic phi transformation), seems an obvious first choice for
a measure of particle-size distribution spread directly from
the Fourier transform of the image of granular material, it
being the 2nd central moment (or moment about the mean)
of the distribution. It follows from intensities in images of
sediment following the central limit theorem (4) that the
most analytically tractable direct estimate of sorting is an
arithmetic standard deviation. Other advantages of this
metric include the use of information from the whole dis-
tribution (whereas graphical statistics, for example, use only
certain percentiles of the cumulative size-distribution) and,
using linear units, errors are relatively easy to compute, and
the result is more readily understood and utilized. This latter
point is perhaps especially important if this work finds
potential use in fields outside of sedimentology/geology in
the wider geophysics community as well as in engineering
and industry. For example, industrial applications might
require a non-intrusive, unsupervised measure of the spread
of the distribution of granular sizes for real-time quality
control.
[52] Other metrics of the spread of particle size distribu-

tions such as the geometric standard deviation, given by

(using the same notation as (6), where log denotes natural
logarithm):

sg ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
S
ðlog s�log mÞ2PðsÞ

q
ð27Þ

are more common in hydrology and geomorphology because
bulk particle-size distributions of natural sediments are typ-
ically observed and assumed to be lognormal in distribution.
In lieu of a direct measure of sg like (6) for arithmetic s,
direct mappings between the measures are presently only
achieved through empirical means for a given sedimento-
logical population. For example, for a population of real
images of sediment (population 5 in Table 2 was chosen for
illustrative purposes because it has an RMS error between
observed and estimated arithmetic sorting coefficients which
corresponds approximately to the average of all samples) the
observed sg versus estimated s (Figure 13b) can be empir-
ically corrected with a linear least squares fit for direct
comparison of the two metrics (Figure 13c).
[53] The analysis of section 3.2 demonstrated that parti-

cles, either whole or in part, are visible from an overhead
perspective to a depth of approximately 4 mean particle
diameters. This is only the first step in the quantification of
apparent versus true particle size distribution (in other
words, the effect of particle overlap in the planform per-
spective of a sediment creating a visible particle size distri-
bution which is different from the true distribution of the
particle population). To do so would require an algorithm to
1) identify all of partial grains as viewed from the surface; 2)
measure both their apparent and true axes in the orientation
in which they are viewed; 3) use this information to quantify
the effects on the algorithms for particle size which use only

Figure 12. Stochastic statistics of a set of 2D sections through 3D homogeneous granular material, sim-
ulated using the CVT-Halton method described in part 1. Transition probabilities measured directly from
the image (symbols) and estimated using (26) (lines). The symbols are as follows: stars = P(p|p) (transition
particle pixel to particle pixel), squares = P(v|v) (transition void to void), circles = P(p|v) (particle to void)
and crosses = P(v|p) (void to particle).
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the statistical information as contained in the auto-
correlogram. For the latter part especially, there remains
much to do.

6.3. Application

[54] The new expression for mean particle size (10) and
sorting (9) in material with an apparent void fraction has
performed reasonably well with sections through simulated
granular material. These are images of irregularly shaped
and dilutely distributed particles in a volume, achieved by
using a random spatial point distribution such as the Poisson
distribution. It thus appears to be a promising advance on
similar techniques with a spherical-particle assumption [e.g.,
Gorecki, 1989; Momota et al., 1994]. While in many prac-
tical applications of the technique it is disadvantageous that
void fraction must be known in advance, we have shown
that errors scale with void fraction, and that errors are small
when void fraction is greater than 50% (Figure 9c). As such
it may complement automated sizing of particles, as such the
latest methods in thin section microscopy [e.g., Torabi et al.,
2008] for 2D images of particles, and in-line particle
holography [e.g., Graham and Nimmo-Smith, 2010] or other
optical techniques based on scattering theories [e.g., Pereira
and Gharib, 2004] for 3D images of particles.
[55] The new method in section 5 for the estimation of f

from a two-phase (particle, void) image using only infor-
mation contained in the autocorrelogram has limited practi-
cal utility in its current form because a) thresholding is

required to binarize the image, and b) calculation of areal
void fraction from a binary image is trivial. However, it is at
least of statistical interest, plus we foresee no theoretical
obstacle to it serving as a simple starting point for estimation
of f directly from non-thresholded images, which would
have considerable utility.

7. Conclusion

[56] New formulas have been proposed for the arithmetic
sorting coefficient of granular material with and without
apparent void fraction. The measure is equivalent to the
standard deviation of apparent intermediate particle dia-
meters. The method uses the autocorrelogram of the sedi-
ment image, estimated from its Fourier transformation, and
an autocorrelogram model for a material with the same mean
particle size but with zero variance in particle size (i.e., a
uniform particle size distribution). A number of available
options for such a statistical model provide inherent flexi-
bility in the approach. In addition, a modification to the
algorithm of Buscombe et al. [2010] for mean particle size
has been proposed for granular sections with known (or
measurable) void fraction. Such a measure has potential
applicability in thin section, microscopic or holographic
imaging of particles. These methods have no tunable para-
meters or empirically derived coefficients, so they should
be broadly universal in appropriate application. However,
empirical corrections increase accuracy.

Figure 13. Comparison between arithmetic and geometric sorting coefficients for one set of images
of real sediment (population 5 in Table 2): (a) measured versus estimated arithmetic sorting using (7);
(b) measured geometric (27) versus estimated arithmetic sorting using (7); and (c) measured geometric sort-
ing (27) versus estimated geometric sorting using (7) adjusted using a linear least squares fit (slope =
0.0094, and intercept = 1.1612).

BUSCOMBE AND RUBIN: SIMULATION AND STRUCTURE OF SEDIMENT, 2 F02002F02002

16 of 18



[57] Images of the surfaces of both real and simulated
(using the methods in part 1) granular material have been
used to evaluate the new methods for use in the absence of
an apparent void fraction. Using real samples, ensemble
RMS errors are 30.9% and 27.4% for standard deviation of
particle sizes without and with bias-correction, respectively.
The bias-correction accounts for sediment population- or
camera/lighting-specific factors and takes the simplest pos-
sible form, which is a slope adjustment of estimates. Smaller
RMS errors would be expected if both a slope and intercept
correction were used. Using the simulated surfaces with no
apparent void fraction, ensemble RMS errors are 14.9% and
13.9% for mean and standard deviation of particle sizes,
respectively, without bias-correction.
[58] Images of 2D sections through simulated granular

volumes have been used to evaluate the methods for esti-
mating mean and standard deviation of particle sizes when
the volume has a known apparent (areal) void fraction.
Ensemble RMS error for sorting is 10.4% without bias-
correction. The same for mean size is a rather unsatisfactory
36%, but reduces to 9% if a correction is applied. This
empirical correction was found using void fraction alone,
suggesting that the method for mean particle size is incor-
porating void fraction correctly only to first-order, and that
an extra term is needed when void fraction is less than
approximately 0.5.
[59] Simulations have also been used to quantify the

approximate discrepancy between estimates of mean particle
size from the visible layers of the surface and that of the
volume as a whole. These discrepancies arise because the
surface has a porosity which is not apparent because of
particle packing which makes them appear to overlap. It was
found that particles, either whole or in part, are visible from
an overhead perspective to a depth of approximately 4 mean
particle diameters. Estimates of mean particle size from
automated methods such as here (also Rubin [2004] and
Buscombe et al. [2010]) are likely to be smaller than the
population mean due to the effects of perspective, whereby
parts of overlapped particles in the image are measured as
well as whole particles.
[60] Finally, a simple analytical formula has been derived

for the one-step pore-particle transition probability matrix,
estimated from the easily computed autocorrelogram, from
which void fraction on a granular material can be estimated
directly. This model gives highly accurate predictions of
bulk void fraction yet imperfect predictions of pore-particle
transitions.

Appendix A: Correcting Estimates of Mean Particle
Size in Granular Material With Apparent Porosity

[61] In order to find the functional form of the error in
estimates of mean particle size in granular material (with an
apparent porosity, f) with respect to f, we use linear opti-
mization to solve the problem:

min
x

1

2
Cx� dð Þ2: ðA1Þ

The curve is forced to pass through points x0 and y0 by
subjecting x to an inequality constraint xeqx = yeq, where xeq
is the Vandermonde matrix for x0, and yeq = y0. Matrix C is

the Vandermonde matrix for f; and d are the target values.
When d = (O � E)/O, and y0 = 0 and x0 = p. Here, when
d = (O � E), xeq = 0 and yeq = �180 (�p, estimated visually
as the intercept). We have used least squares order 3 (cubic
polynomial).
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